Из цикла статей "Молниезащита нефтегазовых объектов".

 

2.1. Нормативные требования

 

Здесь снова приходится опустить Инструкцию СО-153-34.21.122-2003, не содержащую никаких конкретных требований к заземлению молниеотводов. В Инструкции РД 34.21.122-87 формально требования сформулированы, но они касаются не величины сопротивления заземления, а конструкции заземляющих устройств. Для отдельно стоящих молниеотводов речь идёт о фундаментах опор молниеотводов или о специальном заземлителе, минимальные размеры которого показаны на рис. 7.

Минимальные размеры заземлителя из горизонтальной полосы и трех вертикальных стержневых электродов по РД 34.21.122-87

Рисунок 7. Минимальные размеры заземлителя из горизонтальной полосы и трех вертикальных стержневых электродов по РД 34.21.122-87

 

В нормативе нет никаких указаний об изменении размеров электродов в зависимости от удельного сопротивления грунта. Это значит, что по мнению составителей типовая конструкция признается пригодной для любых грунтов. Насколько при этом будет меняться её сопротивление заземления Rgr, можно судить по расчётным данным рис. 8.

Расчетное значение сопротивления заземления типового заземлителя из Инструкции РД 34.21.122-87

Рисунок 8. Расчётное значение сопротивления заземления типового заземлителя из Инструкции РД 34.21.122-87

 

Изменение значения Rgr в пределах почти 2-х порядков величины вряд ли можно расценивать как нормирование. Фактически никаких конкретных требований к величине сопротивления заземления норматив не содержит и этот вопрос безусловно заслуживает специального рассмотрения.

Стандарт ОАО «Транснефть» удивил таблицей нормированных значений сопротивления заземления молниеотводов (рис. 9), которую составители полностью скопировали из последнего издания ПУЭ, где она относится к заземлителям опор ВЛ 110 кВ и выше. Жёсткие требования ПУЭ вполне понятны, поскольку сопротивление заземления опоры ВЛ в значительной мере определяет величину грозового перенапряжения на линейной изоляции. Мотивы переноса этих требований на заземления молниеотводов выяснить невозможно, тем более, что в высокоомных грунтах их вообще не удается реализовать при помощи сколько-нибудь разумных конструкций. Чтобы продемонстрировать это, на рис. 10 показаны результаты расчёта заземлителя молниеотвода совершенно фантастического исполнения. Он представляет собой полностью металлическую конструкцию квадратного сечения, длина стороны которого указана на оси абсцисс. Рассчитаны два варианта – с глубиной заложения в грунт 3 и 10 м. Легко убедиться, что в грунте с удельным сопротивлением ρ = 5000 Ом м нормированное значение 30 Ом (RЗ/ρ = 0,006 м-1) потребует заполнить металлом окрестность фундамента молниеотвода более, чем 50х50 м. Не лучше ситуация и с протяжённом заземлителем. В тех же условиях для обеспечения требуемого сопротивления заземления нужна горизонтальная шина длиной более 450 м.

 

Эквивалентное удельное
сопротивление грунта ρ, Ом*м

Наибольшее допустимое сопротивление
заземления опоры по ПУЭ, Ом

До 100

10

Более 100 до 500

15

Более 500 до 1000

20

Более 1000 до 5000

30

Более 500

6*10-3

 

Таблица 9

 

К оценке возможностей выполнения требований стандарта ОАО «Транснефть» при помощи сосредоточенного заземляющего устройства

Рисунок 10. К оценке возможностей выполнения требований стандарта ОАО «Транснефть» при помощи сосредоточенного заземляющего устройства

 

Требования стандарта ОАО "Газпром" предельно конкретны. Сопротивление заземления отдельно стоящего молниеотвода для I и II уровней защиты должно быть равно 10 Ом в грунтах с ρ ≤ 500 Ом м. В более высокоомных грунтах допускается использовать заземлители, сопротивление которых определяется как

формула 2

Отдавая себе отчёт в сложности изготовления такого относительно низкого сопротивления заземления, стандарт рекомендует химическую обработку или частичную замену грунта. Заслуживает внимания оценка объема рекомендованных работ в конкретных условиях. Ее легко выполнить для простейшей ситуации, ориентируясь на полусферический заземляющий электрод, потенциал которого в двухслойном грунте (независимо от того, что было сделано – химия или механическая замена грунта) согласно рис. 11 равен

формула 3

К оценке сопротивления заземления в двухслойном грунте

Рисунок 11. К оценке сопротивления заземления в двухслойном грунте

 

Откуда точное значение сопротивления заземления определяется как

формула 4

В предельном случае, когда химическая обработка или замена грунта оказались столь эффективны, что его удельное сопротивление упали почти до нуля,

формула 5

Выражение позволяет оценить снизу радиус обработки r1. В рассматриваемом примере он оказывается равным приблизительно 40 м, что соответствует объёму грунта около 134000 м3. Полученное значение заставляет очень серьёзно задуматься о реальности намечаемой операции.

Сопротивление заземления двухлучевого горизонтального заземлителя в зависимости от толщины верхнего обработанного слоя грунтате

Рисунок 12. Сопротивление заземления двухлучевого горизонтального заземлителя в зависимости от толщины верхнего обработанного слоя грунта

 

К похожему результату приводит оценка и для любой другой практически значимой конфигурации заземляющих электродов, например, для двухлучевого заземлителя из горизонтальных шин длиной по 20 м. Расчётная зависимость на рис. 12 позволяет оценить, как меняется сопротивление заземления такой конструкции при вариации толщины верхнего низкоомного слоя заменённого грунта. Требуемое сопротивление заземления в 20 Ом получается здесь при толщине обработанного (или заменённого) слоя в 2,5 м. Важно понять, на каком расстоянии от заземлителя можно прекратить обработку. Показателем является потенциал на поверхности земли U(r). Изменение удельного сопротивления перестанет влиять на результат там, где потенциал U(r) станет намного меньше потенциала заземляющего электрода UЗ = U(r0).

 
 

2.2. С какой целью заземляется молниеотвод

 

Прошу не считать банальным заголовок раздела. Молниеотводы заземляли всегда, с момента их изобретения, иначе как они могли бы отвести в землю ток молнии. Современные руководства говорят о том, что сопротивление заземления должны обеспечить безопасный отвод тока молнии. О какой опасности и безопасности речь? Здесь не удастся отговориться банальностями. Наверное, стоит ещё раз вспомнить о воздушных линиях электропередачи. Там сопротивление заземления определяет резистивную составляющую грозовых перенапряжений которые действуют на гирлянду изоляторов.

Формула 6

Ничего подобного нет у молниеотводов. Их молниеприёмник ”без проблем” принимает потенциал заземляющих электродов. Присутствие конечного сопротивления заземления никак не влияет и на способность молниеотвода притягивать к себе молнию. В лаборатории не раз пытались проследить за влиянием сопротивления заземления на этот процесс и каждый раз безрезультатно. Объяснение здесь достаточно простое и очевидное. Молния никогда не ударяет в молниеотвод. Её встречает и притягивает к себе плазменный канал встречного разряда, который стартует от вершины молниеотвода в электрическом поле грозового облака и заряда уже формирующейся молнии. Этот канал (его называют встречным лидером) развивается при токе не более десятков ампер. Падение напряжения от такого слабого тока на сопротивлении заземления молниеотвода мало значимо по сравнению с потенциалом порядка 107 -108 В, который несет молния от грозового облака. Действительно, при сопротивлении заземления 10, 20, 100 или 200 Ом напряжение на заземлителе от тока ~ 10 А все равно не превысит даже 104 В – величину ничтожно малую по сравнению с тем, чем располагает молния.

Отдельно стоящий молниеотвод, как известно, используют с единственной целью – устранить распространение тока молнии по металлоконструкциям защищаемого объекта. Именно для этого выбираются вполне конкретные расстояния от молниеотвода до объекта по воздуху и по земле. Допустим, что они выбраны верно и действительно исключают искровые перекрытия. Тем не менее, ток в заземлитель объекта попадает и попадает достаточно весомой долей, особенно когда функцию его заземления исполняет достаточно большой по площади фундамент защищаемого сооружения. Расчётные данные на рис. 14 показывают эту долю в зависимости от расстояния между заземлителями. У молниеотвода он выполнен согласно предписанию Инструкции РД 34.21.122-87 в виде горизонтальной полосы длиной 10 м с 3-мя вертикальными стержнями по 3 м каждый; фундамент объекта имеет размеры 50х50 м и заглублен на 3 м. Компьютерные расчёты выполнены для однородного грунта и для случая, когда поверхностный слой основного грунта на глубину до 2,5 м заменён высоко проводящим с удельным сопротивлением, меньшим в 50 раз. Легко убедиться, что изоляционное расстояние в 5 м, предписанное по стандарту ОАО «Транснефть», мало препятствует проникновению тока молнии к объекту через грунта, особенно, если его верхний слой заменен или химически обработан. Даже при расстоянии в 15 м, нормированном стандартом ОАО «Газпром», ток в заземлителе объекта превышает 50%.

Доля тока молнии, проникшая в заземлитель объекта через проводящую связь с заземлителем молниеотвода в зависимости от расстояния между ними

Рисунок 14. Доля тока молнии, проникшая в заземлитель объекта через проводящую связь с заземлителем молниеотвода в зависимости от расстояния между ними

 

Здесь нужно ещё раз подчеркнуть, что любая обработка верхнего слоя грунта, снижающая сопротивление заземления, не только не уменьшает кондуктивную связь между молниеотводом и объектом, но заметно осиливает её, повышая тем самым долю тока молнии, ответвившуюся в объект.

Самое время ещё раз поставить вопрос о цели снижения сопротивления заземления. Остается два незатронутых аспекта проблемы – формирование искровых каналов и напряжение шага. Первый вопрос будет рассмотрен ниже в специальном разделе. Что же касается напряжения шага, то оно безусловно зависит от конструкции заземлителя молниеотвода и от его сопротивления заземления. Расчётные кривые на рис. 15 демонстрируют динамику снижения напряжения шага по мере удаления от типового заземлителя молниеотвода, предписанного Инструкцией РД 34.21.122-87 (см. пояснения к рис. 14).

 

 

 

 

2.3. Как проектировать

 

В разделе снова ставится задача об удовлетворении требований нормативных документов без неоправданных материальных затрат. Это тем более важно, что на качество внешней молниезащиты величина сопротивления заземления молниеотвода мало влияет. Во всяком случае, с ней не связаны непосредственно те опасные воздействия молнии, которые могут привести к катастрофической ситуации на резервуарном парке или каком-либо другом объекте переработки углеводородного топлива. Главное, очень хотелось бы избежать дорогостоящей химической обработки или замены больших объёмов грунта и без них выполнить требования отраслевых нормативов по молниезащите.

Создавать заземлитель для каждого молниеотвода в отдельности целесообразно только в грунтах с низким удельным сопротивлением, где даже типовая конструкция из РД 34.21.122-87 оказывается вполне дееспособной. Например, при рекомендованной там длине горизонтальной шины в 12 м и 3-х вертикальных стержнях по 5 м сопротивление заземления в грунте удельным сопротивлением ρ равно

формула 6_

Это значит, что при ρ ≤ 300 Ом м расчётное значение не превысит 20 Ом. При более высоком удельном сопротивлении грунта неплохой результат обеспечивают 4 взаимно перпендикулярных луча. При длине по 20 м каждый сопротивление заземления оказывается равным

формула 7

а установка 5-метровых вертикальных стержней на концах каждого из лучей снижает эту величину до

Формула 8

Проблема становится серьезной, когда удельное сопротивление грунта заметно превышает 1000 Ом*м. Здесь привлекает внимание организация единого контура заземления для всех отдельно стоящих молниеотводов. Стоит ещё раз обратиться к рис. 4, где демонстрируется защита резервуарного парка 3-мя тросами длиной по 100 м, при расстоянии между параллельными тросами 50 м. Объединение их опор горизонтальными шинами образует контур заземления с двумя ячейками 100х50 м. Его сопротивление заземления при укладке шин на глубину 0,7 м обеспечивает

Формула 9

что позволяет решить проблему в грунте удельным сопротивлением до 3000 Ом*м, даже руководствуясь предписанием стандарта ОАО "Газпром". Уместно отметить, что дополнительное устройство локального заземлителя у каждого из молниеотводов почти не влияет на сопротивление заземления образованного контура в целом. Так, использование в качестве локального заземлителя каждого молниеотвода стойки его фундамента с металлической арматурой длиной 5 м и эквивалентным радиусом 0,2 м (Rgr ≈ 0.1ρ [Ом]) в системе из 6 стоек снизило суммарное сопротивление контура заземления всего на 6%. Причина столь слабого влияния заключена в эффективной экранировке стержней протяженными горизонтальными шинами. Удлиняя горизонтальные шины, связывающие опоры молниеотводов, можно добиться сопротивления заземления порядка 20 Ом и в грунте с удельным сопротивлением 5000 Ом.

Читатель вправе прервать описание столь радужных перспектив, напомнив, что длинная шина медленно вступает в процесс растекания импульсного тока из-за своей индуктивности. Возразить против этого нечего. Но по крайней мере два обстоятельства все-таки действуют в пользу предложенного решения. Во-первых, ни один из упоминавшихся нормативов не требует каких-либо конкретных значений импульсного сопротивления заземления, а во вторых, в высокоомных грунтах скорость проникновения импульсного тока в заземляющую шину достаточно высока и потому текущее значение сопротивления заземления Rgr(t) = Ugr(t)/iM(t) быстро принимает установившееся значение, контролируемое нормативными требованиями. Как пример на рис. 16 показана расчетная динамика изменения сопротивления заземления шины длиной 200 м между опорами молниеотводов. Принято, что удельное сопротивление грунта равно 5000 Ом*м, а его относительная диэлектрическая проницаемость равна 5 (учёт этого параметра важен, когда ёмкостная утечка в грунт сопоставима с кондуктивной).

 

Э. М. Базелян, д.т.н., профессор
Энергетический институт имени Г.М. Кржижановского, г. Москва

 

Читайте далее "3. Скользящие искровые каналы вдоль поверхности грунта".


Полезные материалы:


Смотрите также: