В линиях электропередачи из-за атмосферных явлений, а также процессов коммутации, нередко возникают импульсные перенапряжения. Импульсные перенапряжения из-за атмосферных явлений могут возникать также в проводных системах связи на медных кабелях, а также антенных сооружений систем радиосвязи. Резкие броски напряжения способны разрушать изоляцию проводов. Также указанные явления могут приводить к выходу аппаратуры из строя. Для борьбы с перенапряжениями применяются устройства, именуемые разрядниками. Их задача — быстро соединить линию подвергшеюся опасности с заземлением, тем самым «сбросить» разрушительный электрический заряд. Ни электромеханические системы (реле), ни даже устройства с микропроцессорным управлением не способны заменить простые и дешевые разрядники, отличающиеся от прочих «выключателей» высоким быстродействием.
Защитные устройства с нелинейным сопротивлением (варисторы) часто также относят к разрядникам, хотя принцип их работы другой
Наиболее массовый класс разрядников, исторически появившийся первым — так называемые искровые разрядники. В их основе лежит явление электрического разряда в газе, отсюда и появилось слово «разрядник». Сейчас для защиты изоляции и аппаратуры используют также твердотельные устройства, обладающие нелинейным сопротивлением (варисторы) — при росте напряжения, приложенного к электродам, сопротивление резко падает. Такие устройства также называют разрядниками, хотя никакого разряда в них физически не происходит. Мы расскажем о принципе работы именно искровых разрядников.
Устройство искрового разрядника
Конструкция типичного искрового разрядника содержит в себе следующие основные элементы: герметичную камеру, заполненную газом, электроды, устройство гашения дуги.
Когда напряжение на электродах не выше порогового значения, разрядник находится в состоянии покоя. Внутреннее сопротивление (до 1 ГОм) в этом режиме можно считать бесконечно большим.
При увеличении напряжения выше порогового значения на электродах в газе возникает сначала тлеющий разряд, в результате чего напряжение на выводах падает до 80 В. При этом газ разогревается, растет ток через него, что быстро приводит к возникновению дугового разряда, когда внутри устройства образуется плазменный канал низким сопротивлением. После перехода в данное состояние через разрядник протекает значительный ток (до 150 килоампер), а напряжение на выводах падает до значения около 20 В.
Одноразовые и самовосстанавливающиеся разрядники
Одноразовый искровой разрядник не сможет защитить изоляцию и аппаратуру от повторного действия молнии. После завершения своего действия он представляет собой перемычку с сопротивлением, близким к нулю. В сетях электропитания такая перемычка вызывает срабатывание защиты, отключающей подачу электроэнергии. В телекоммуникационных сетях прерывается связь, что вызывает срабатывание сигнализации. После получения сигнала об обесточивании или прерывании связи на место выезжает специалист, заменяющий одноразовый разрядник.
Простейший вариант реализации одноразового разрядника — электроды внутри камеры, выполненные из металла, который расплавляется под действием высокой температуры. Более сложный вариант — перемычка, закрепленная на стенке камеры каплей легко плавящегося металла. При дуговом разряде эта капля расплавляется и перемычка соединяет электроды. Вероятно, вы уже догадались о том, что одноразовый искровой разрядник не самое лучшее решение для защиты электрических линий и устройств.
Самовосстанавливающийся искровой разрядник способен возвращаться в состояние покоя ограниченное число раз. Иногда такой разрядник используют совместно со счетчиком срабатываний, который позволяет оценить грозовую нагрузку и ожидаемый срок службы устройства.
Проблемы технической реализации
Основной проблемой при построении самовосстанавливающегося искрового разрядника является необходимость гашения дуги. Дело в том, что процесс дугового разряда является самоподдерживающимся. После того, как импульс прошел, плазменный канал продолжает существовать какое-то время, при этом защищаемая линия замкнута на землю. Если канал не погасить, сработает защита линии от короткого замыкания, что в общем случае нельзя допустить. А, если речь идет о телекоммуникационных применениях, то прерывается связь. В добавок ко всему, от нагрева разрядник просто разрушается. Для гашения дуги используются разнообразные средства, по конструкции которых и различаются типы искровых разрядников.
Другая проблема — защита симметричной линии, что особенно актуально для использования в телекоммуникационной отрасли. Оба провода защищены путем соединения их разрядниками с «землей». Из-за разницы параметров разрядников может возникнуть ситуация, когда один разрядник сработает, а другой нет, что может только усугубить ущерб от импульсных перенапряжений. Поэтому для защиты симметричных линий применяются трехэлектродные разрядники (не путать с управляемыми разрядниками, которые также имеют три электрода). Они представляют собой фактически два разрядника в виде одного устройства и с общем выводом «земли», выполненные в едином производственном цикле. Благодаря этому их технические характеристики полностью идентичны.
Методы гашения дуги
Обеспечение гашение дуги в заданный промежуток времени может быть обеспечено применением специального газа, который подавляет электрическую дугу при силе тока ниже порогового значения. Но на практике такой способ применяется редко, недостатком подобных разрядников является низкая стабильность ресурса использования. То есть, количество возможных срабатываний можно наперед определить только приблизительно.
Трехэлектродный разрядник с термореле производства компании CITEL
Более распространенный способ, когда речь идет о телекоммуникационных применениях — разрядник с термореле. В таких разрядниках используются прочные электроды, способные выдержать многократное срабатывание. Параллельно разряднику включается термореле. При возникновении дугового разряда камера нагревается и термореле срабатывает, шунтируя разрядник. Напряжение на разряднике падает до нулевого значения и дуговой разряд прекращается. После охлаждения термореле его контакты размыкаются и разрядник переходит в состояние покоя. Разрядники с термореле выдерживают до 10 срабатываний.
В вентильном разряднике для гашения дуги используется нелинейное сопротивление
На протяжении многих десятилетий на электрических сетях широко используются вентильные разрядники. Они представляют собой последовательно соединенный газовый разрядник и нелинейное сопротивление. В нашей стране обычно используются сопротивления из вилита — композиционного материала на основе карбида кремния. Сопротивление вилитового резистора тем меньше, чем больше сила тока. Когда происходит импульсное перенапряжение и срабатывает разрядник, сила тока через резистор резко возрастает и его сопротивление снижается. Но когда импульс прошел и продолжается самоподдерживающийся дуговой разряд, сила тока падает, сопротивление резистора возрастает, что приводит к уменьшению напряжения на контактах разрядника. Таким способом гасится дуговой разряд. Вентильный разрядник выдерживает до 20 срабатываний.
Разновидностью вентильного разрядника является магнитовентильный, где для гашения дуги дополнительно используется магнитное поле.
Несколько выбивается из общего ряда трубчатый разрядник, который также относится к искровым. В нем камера не является герметичной и заполнена твердым веществом — поливинилхлоридом. «Земля» выполнена в виде трубки, другой электрод выполнен в виде стержня, коаксиально расположенного в этой трубе. При искровом разряде в толще поливинилхлорида вырабатывается газ, стремящийся выйти наружу. Течение газа осуществляет гашение дуги. Трубчатые разрядники выдерживают до 10 срабатываний. Их основное преимущество — дешевизна, но в остальном их характеристики находятся не на самом высоком уровне, поэтому такие разрядники постепенно заменяют твердотельными.
Специальные типы разрядников
Выпускаются управляемые разрядники, имеющие три электрода. Они используются не для защиты оборудования, а для коммутации больших импульсов энергии. Третий электрод нужен для управления током, текущим между двумя другими электродами.
Для защиты изоляторов ЛЭП применяются длинно искровые разрядники, основанные на принципе скользящего разряда. Этот тип разряда возникает на диэлектрической поверхности и не может переходить в дуговой разряд, что отменяет необходимость в дугогасительных устройствах. В последнее время на смену длинной искровым разрядникам приходят мультикамерные, в которых гашение дуги происходит потоком газа, вырабатываемом при разряде. Как длинно искровые, так и мультикамерные разрядники были изобретены российскими учеными.
Выводы
Искровые разрядники находят свое применение как недорогие надежные устройства, способные выдерживать большие нагрузки. В телекоммуникационных приложениях использование варисторов ограничено из-за высокой емкости. В то же время, целесообразность их использования во многом упирается в экономику. Вентильный разрядник — дорогое устройство, требующее замены через каждые 20 срабатываний. Разница в стоимости между твердотельным и вентильным разрядниками полностью перекрывается более высокими затратами на эксплуатацию, так что твердотельный разрядник предпочтительнее.
Искровые разрядники применяются для уравнивания потенциалов в системах молниезащиты
Применение искровых разрядников в телекоммуникационных и сетях низковольтного электроснабжения необходимо и оправдано. В системах молниезащиты они очень востребованы благодаря надежности и возможности пропускать через себя большие токи. Примером тому могут служить разделительные разрядники Leutron, выдерживающие силу тока до 100 килоампер.
Как вы могли понять из данного материала, принцип действия искровых разрядников не так, прост, как может показаться. Поэтому для их применения в системах молниезащиты желательно обратиться к опытным специалистам из технического центра Zandz.com.
Смотрите также: