Зачем это делать
Измерение сопротивления заземления дает базовую информацию о его работоспособности. А так как основным средством защиты электроустановок, как правило, является именно заземляющее устройство (ЗУ), без оценки его основной характеристики не обойтись как при сдаче в эксплуатацию, так и при периодических и контрольных испытаниях в процессе эксплуатации.
Основные понятия позволяют говорить на одном языке. Вы понимаете и Вас понимают.
Согласно ПУЭ-7, сопротивлением заземляющего устройства называется отношение напряжения на ЗУ к току, стекающему с заземлителя в землю. При этом обратим внимание, что заземляющим устройством называется совокупность заземлителя и заземляющих проводников. То есть при измерении необходимо определить сопротивление всей цепи, составляющей заземлитель (распространен термин «контур заземления», обозначающий эту цепь, хотя в ПУЭ-7 он официально не закреплен).
Применительно к ЗУ различают испытания, связанные с вводом в эксплуатацию и эксплуатационные испытания. В первом случае измерение сопротивления производятся, чтобы определить, можно ли вводить ЗУ в эксплуатацию (наряду с другими видами испытаний, если они предусмотрены нормативными документами). Во втором случае оценивается работоспособность уже введенного в строй заземления в данный момент времени. Необходимость в эксплуатационных испытаниях возникает как по причине старения ЗУ, так и по причине сезонного изменения параметров заземления, связанного, например, с колебанием влажности грунтов.
Несмотря на то, что измеряется сопротивление, применение обычных омметров для проверки ЗУ практически бесполезно. Для этого вида измерений выпускаются специальные приборы. Они именуются измерителями сопротивления заземления или просто измерителями заземления.
Измерения могут проводиться на постоянном токе, переменном токе промышленной частоты (для нашей страны это частота 50 Гц), а также переменном токе высокой частоты (частота порядка сотен Гц и выше). Поскольку основой электроэнергетики все еще является переменный ток, измерения параметров заземления на постоянном токе, за исключением каких-то совсем узкоспециализированных случаев, не проводятся. При измерениях на частоте 50 Гц возникает проблема помех от блуждающих токов на той же частоте, вызванных работой электроустановок или даже ЛЭП поблизости. Эта проблема решалась возможностью вручную варьировать рабочую частоту (например, такое решение было применено в советском приборе МС-08). Измерения с использованием токов высокой частоты весьма актуальны в связи с широким распространением разного рода нелинейных нагрузок, что приводит к обилию гармоник в цепи заземления.
В современных приборах используется измерение сопротивления с использованием импульсов тока с формой «меандр», частота которых лежит в пределах от 100 до 300 Гц (например, в пользующемся большой популярностью приборе ЖГ-4300 используется частота 128 Гц). Тем самым удается отстроиться от помех с частотой 50 Гц и имитировать реальные условия, когда ток имеет множество гармоник. Дополнительная защита от действия помех достигается за счет цифровой обработки сигналов, в частности, применения быстрого преобразования Фурье.
Амплитуда напряжения на клеммах измерителей сопротивления ЗУ, как правило, не должна превышать 42 В. Благодаря этому обеспечивается безопасность процедуры измерения для персонала.
Чем измерять
Настоящей «рабочей лошадкой» для измерения сопротивления ЗУ долгие годы являлся прибор МС-08. Его выпуск был начат еще в 1957 г., при этом прибор используется кое-где до сих пор. Мало того, в интернет-магазинах можно найти новые экземпляры, продаются они по цене даже выше современных цифровых измерителей китайского производства. Кстати, упоминания о снятии с производства МС-08 найти нигде не удалось, возможно, эта легенда выпускается до сих пор?
Важным преимуществом МС-08 является то, что ему не нужны элементы питания. При измерении необходимо крутить ручку динамо-машины, вырабатывающей переменный ток. Меняя частоту вращения ручки, можно варьировать частоту, на которой производятся измерения, чтобы отстроиться от помех. С ручкой механически связана не только динамо-машина, но еще и коммутатор, выполняющий функцию выпрямителя. Коммутатор меняет полярность подключения измерительного прибора синфазно с генерируемым динамо-машиной током. Благодаря этому достаточно эффективно подавляются помехи. У прибора предусмотрено три диапазона измерений: до 10 Ом, до 100 Ом и до 1000 Ом.
В 1972 г. в СССР был налажен выпуск более совершенных измерительных приборов М416, где уже ручку крутить не нужно было. Подавление помех осуществлялось благодаря применению метода синхронного детектирования. Возможно было измерения сопротивления в пределах от 0,1 до 1000 Ом, было предусмотрено 4 диапазона измерений. В настоящее время «классический» аналоговый М416 не выпускается, тем не менее, под данным индексом на рынок сейчас поставляется цифровой измеритель сопротивления ЗУ, который, впрочем, ничего общего с «тезкой» не имеет.
Из аналоговых измерителей сопротивления ЗУ советского образца до сих пор выпускается и широко используется прибор Ф4103-М1. Он может питаться как от гальванических элементов, так и от внешнего источника. Измерения осуществляются на частоте около 300 Гц (не регулируется). Прибор способен измерять сопротивления от 0 до 15000 Ом, предусмотрено 10 диапазонов.
Современные приборы, как правило, имеют цифровую индикацию, но до сих пор есть специалисты, для которых стрелочные индикаторы являются более комфортными. Они по достоинству оценят недорогой прибор SEW 1805R со стрелочным индикатором. К преимуществам устройства, измеряющего сопротивления от 0,1 до 2000 Ом (3 диапазона), можно отнести малую силу тока, используемую при измерениях (2 мА против 80 — 200 мА у других приборов), что в ряде случаев позволяет не отключать измеряемые цепи. Другая особенность — высокая рабочая частота, составляющая 820 Гц. Недостаток прибора — он поддерживает только 2-проводную и 3-проводную схемы измерений (об этом более подробно пойдет речь далее).
Для проведения измерений в сложных условиях оптимально подойдет прибор ИС-20. В числе его преимуществ — эргономичный дизайн, степень защиты IP54, многовариантность способов питания. Диапазон измеряемых сопротивлений — от 1 микроОма до 9,99 кОм. Данные измерений могут быть переданы на компьютер беспроводным способом через Bluetooth. Рабочая частота — 128 Гц, в режиме двухпроводных измерений — 512 Гц. Важно, что прибор производится в России, что критично для ряда применений.
Современной «рабочей лошадкой» измерений сопротивления ЗУ является прибор Железный Гарри ЖГ-4300. Он очень легкий (0,9 кг с элементами питания), имеет удобный эргономичный дизайн. Можно измерять сопротивления от 0,05 Ом до 20 кОм, предусмотрено 5 диапазонов.
К топовым моделям измерителей можно отнести прибор MRU-200. Он способен измерять сопротивление защитного заземления в пределах от 0 до 19,99 кОм. Степень защиты IP54, предусмотрен встроенный NiMH аккумулятор емкостью 4,2 Ач — все это является значительными преимуществами при работе «в поле». Помимо измерения сопротивления защитного заземления, прибор также умеет определять сопротивление заземления системы молниезащиты импульсным методом, от 0 до 199 Ом. Этот измеритель сопротивления ЗУ производится на территории Евросоюза, а именно, в Польше.
Следует отметить, что перечисленные приборы, помимо основной функции, могут иметь и дополнительные, например, измерение удельного сопротивления грунта или измерение сопротивления тока утечки.
Как измерять
Наиболее распространенными являются классические методы измерения сопротивления ЗУ, основанные на применении вольтметра и амперметра с последующим вычислением сопротивления по закону Ома. Более подробно об этих методах можно прочесть здесь.
К преимуществам классических методов можно отнести возможность их использования практически для любых систем электроснабжения. Недостатки — необходимость отключения заземления от электроустановки на время измерений, влияние блуждающих токов на точность измерений.
Классические методы делятся на двух- , трех- и четырехпроводные. Из-за низкой точности двухпроводный метод практически не используется. Трехпроводный метод отличается простотой реализации, но по точности он уступает четырехпроводному.
В том случае, если измеряемое сопротивление ЗУ должно быть заведомо ниже 5 Ом, рекомендуется использовать только четырехпроводный метод.
На измерительном приборе есть потенциальные клеммы П1 и П2 и токовые клеммы Т1 и Т2. При четырехпроводном методе от П1 и Т1 к заземлению идут разные провода, которые соединяются уже непосредственно на клеммах заземления. При измерении трехпроводным методом клеммы П1 и Т1 соединяются перемычкой и от них к заземлению идет один провод. Если же прибор изначально предназначен только для измерений трехпроводным методом, то для подключения к заземлению одним проводом предусмотрена, соответственно, одна клемма.
Клеммы П2 и Т2 соединяются, соответственно, с так называемыми потенциальным штырем и токовым штырем. Измерительные штыри рекомендуется заглублять в грунт не менее, чем на 0,5 м. Обычно токовый и потенциальный штыри выстраивают в единую линию с ЗУ.
Для того, чтобы правильно определить расстояние между штырями, нужно определить максимальный размер диагонали заземлителя D. Потенциальный штырь устанавливается на расстоянии 1,5 D, но не менее 20 м от заземлителя. Токовый штырь устанавливается на расстоянии не более 3D, но не менее 40 м от заземлителя.
Но одного измерения для получения точного результата обычно недостаточно. Причина — неравномерность структуры почвы. Поэтому потенциальный штырь несколько раз устанавливают на расстоянии от 20 до 80% от исходного расстояния между потенциальным и токовым штырем. При этом каждый раз измеряется сопротивление. Чем больше точек, тем лучше, для высокой точности достаточно шага в 10%. Полученные результаты наносятся на график. Если график имеет форму плавно возрастающей кривой, то за окончательный результат берется сопротивление на участке, где разница между соседними точками не превышает 5%. Если график демонстрирует значительную крутизну либо более сложную форму, то измерения нужно повторить, изменив направление линии, на которой выставлены штыри. Возможно, придется также увеличить исходные расстояния в 1,5 — 2 раза.
Безэлектродный метод
Установить токовый и потенциальный штыри не всегда есть возможность. Например, в условиях вечной мерзлоты или когда для штырей на объекте просто нет места. В то же время, измерение заземления ЛЭП в районах вечной мерзлоты осуществляется, как правило, именно в период наибольшего промерзания грунта. Также не всегда есть возможность отключить ЗУ от электроустановки на время измерений. Тогда в ход идет безэлектродный метод измерения согласно ГОСТ Р 50571.16-2007, основанный на применении токовых клещей. Подробно он описан здесь.
На ЗУ подается от измерительного генератора переменный ток заданного напряжения с частотой, отличной от частоты сети. Сила тока в проводе заземления измеряется специальными токовыми клещами, которые чувствительны только к частоте, на которой работает измерительный генератор. Поскольку значение напряжения на ЗУ точно известно, измерив силу тока, можно вычислить, согласно закону Ома, сопротивление ЗУ.
Следует отметить, что, при всем удобстве, безэлектродный метод по точности измерений уступает правильно организованным измерениям по классическому методу. В частности, для подачи переменного тока для измерения в цепь используется прибор, аналогичный по принципу действия токовым клещам. Чтобы обеспечить нужный уровень индукции, применяется рабочая частота около 3 кГц, что также дает погрешность.
Можно считать, что безэлектродный метод дает оценку значению сопротивления ЗУ сверху. То есть реальное значение сопротивления не превысит показания прибора. С точки зрения безопасности это нормально — чем меньше реальное значение сопротивления, тем лучше.
Недостатком безэлектродного метода является то, что он может напрямую применяться только в системах ТТ и системах TN с ячеистым заземлением. Для обычных систем TN потребуется кратковременная установка перемычки между нейтралью и заземлением. Питание во всем здании, где установлено заземление, придется на время измерений отключить и преимуществ относительно классического метода уже не будет.
В качестве примеров оборудования для измерения безэлектродным способом, можно привести FLUKE-1630-2 и Greenlee CMGRT-100A. Стоимость таких систем в 5 — 10 раз выше, чем у приборов для измерения сопротивления классическим способом.
Требования к приборам, документации и персоналу лаборатории
Поскольку от исправности заземления зависит состояние здоровья, а то и жизни людей, рассматриваемые в статье приборы должны быть сертифицированы для использования на территории РФ и пройти поверку. Срок поверки измерителя сопротивления ЗУ обычно составляет 1 год, в отдельных случаях — до 2 лет. Общие требования к квалификации сотрудников, работающих с измерителем сопротивления ЗУ, как правило, приведены в технической документации к прибору.
Если измерения осуществляются в рамках текущего обслуживания электроустановки, документация по ним оформляется согласно гл. 1.8 ПТЭЭП.
Для того, чтобы лаборатория, где используется прибор, могла работать в рамках Единой системы соответствия, ее организационная структура и квалификация сотрудников должны соответствовать требованиям СДАЭ-04-2010. Лаборатория должна пройти аттестацию по правилам, приведенным в СДАЭ-01-2010 и ПОТЭЭ иметь Свидетельство о регистрации электролаборатории.
В том случае, если измерения осуществляются аккредитованной лабораторией, оформление протокола измерений осуществляется согласно ГОСТ Р 58973-2020. Этот ГОСТ дает общие правила оформления документации. Конкретный образец бланка протокола измерения сопротивления ЗУ получил название ЭЛ-8а (скачать бланк). Данный бланк соответствует требованиям ГОСТ Р 58973-2020, тем не менее, он не был введен каким-либо федеральным нормативным актом. Просто в свое время был создан типовой комплект бланков протоколов испытаний в формате *.doc. Это удобно, тем не менее, законодательно требование использовать именно такую форму нигде не закреплено.
К протоколу измерений желательно приложить копию свидетельства об аттестации лаборатории, а также копию свидетельства о поверке измерительного прибора. Эти документы сразу дадут понимание компетентности и профессионализма работников и компании производивших измерения.
Сколько должно быть Ом и как часто нужно измерять?
Некоторые нормы на сопротивление заземления приведены в таблице:
Вид заземления | Сопротивление, Ом, не более | Нормативный документ | Возможность увеличения в исключительных случаях |
Электроустановки до 1 кВ с изолированной нейтралью | 4 | п. 1.7.65 ПУЭ-7 | 10 Ом при мощности генераторов и трансформаторов не более 100 кВА |
Общее сопротивление растеканию заземлителей трехфазной ВЛ 380 В | 10 | п. 1.7.64 ПУЭ-7 | 0,01ρ раз при удельном сопротивлении земли ρ свыше 100 Ом*м, но не более 10-кратного |
Повторное сопротивление растеканию заземлителей трехфазной ВЛ 380 В | 30 | п. 1.7.64 ПУЭ-7 | 0,01ρ раз при удельном сопротивлении земли ρ свыше 100 Ом*м, но не более 10-кратного |
Заземление нейтрали генератора или трансформатора в трехфазной сети 380 В | 4 | п. 1.7.101 ПУЭ-7 | 0,01ρ раз при удельном сопротивлении земли ρ свыше 100 Ом*м, но не более 10-кратного |
ПТЭЭП рекомендует осуществлять полную проверку ЗУ со вскрытием грунта 1 раз в 12 лет. Устройства заземления опор воздушных линий менее 1000 В следует проверять чаще - 1 раз в 6 лет. Кроме этого, устройства заземления следует проверять после ремонта опор.
Нормы РД 153-34.0-20.525-00 требуют полной проверки ЗУ на объектах электроэнергетики с периодичностью 1 раз в 12 лет. Тем не менее, после возникновения короткого замыкания или аварийных ситуаций на объекте, должно быть произведено обследование ЗУ в зоне аварии и на прилегающих к ней участках ЗУ. Кроме этого, что особенно актуально в свете проводимых мероприятий по цифровизации электроэнергетики, рекомендовано проверять ЗУ после каждой реконструкции, особенно если устанавливаются электронные и микропроцессорные устройства. Вот почему по мере внедрения современных технологий в электроэнергетике приборы для измерения сопротивления ЗУ будут все более востребованы.
Получить бесплатный расчет заземления или задать вопрос эксперту ZANDZ можно используя кнопки ниже.
Смотрите также: